
E-BOOK

Scale up Digital
Transformation with
Microservices
Architecture

Contents

Introduction� 1

What Industry Leaders Say� 2

Digital Transformation Value Drivers� 3

What are Microservices?� 4

The Monolith� 7

Defining the boundaries of Microservices —Coupling and Cohesion� 9

Shift to Microservices from Monoliths� 11

When Enterprise Should Shift from Monolithic to Microservices� 15

Expectations from Microservices Architecture While Considering
the Shift from Monolith� 16

A Few Approaches for the Migration
of Monolithic to Microservices� 19

Cygnet Digital’s Approach to Digital Transformation with Microservices� 22

About Cygnet Digital� 28

Closing Summary� 29

Scale up Digital Transformation with
Microservices Architecture 1

Introduction

Unlike the name suggests, digital transformation relies on technology, but
also on various other digital transformation drivers such as people and skills
development, alliance development, customer experience, digitalization and
enhancement, value add across products, and innovation. In all the initiatives
around digital transformation, technology is the primary enabler providing
the necessary building blocks to empower change across the organization.

Microservices have proven to be the most appropriate approach towards
digitally transforming a business by attacking existing technical debt, simpli-
fying complex current scenarios, and using a clean and robust microservice
architecture. Typically, the legacy applications are monolithic with a 3-tier
architecture that results in the lack of scalability. But today, adopting micro-
services architecture is the need of the hour.

Learn more in this white paper on strategies for using microservices to
achieve digital transformation.

Technological disruptions are happening and being adapted at a faster pace
than ever. Every industry and businesses are transforming to change the way
they operate and improve customer experience. Organizations have started
adopting new and modern ways to streamline operations and provide the
business with an agile and futuristic approach.

Scale up Digital Transformation with
Microservices Architecture 2

What Industry Leaders Say

“For many organizations, legacy systems are seen as holding back the busi-
ness initiatives and business processes that rely on them,” says Stefan Van
Der Zijden, VP Analyst, Gartner. “When a tipping point is reached, appli-
cation leaders must look to application modernization to help remove the
obstacles.”

“Application architecture impacts how well an application can perform in
a volatile environment,” says Aashish Gupta, Team Manager, Gartner. “An
investment in application architecture competency can yield powerful re-
turns.”

 “The evolution of software engineering has expanded the scope of a software
engineering leader’s job,” says Mike Gilpin, Managing Vice President, Gartner.
“It’s not just about delivering code. On a daily basis, software engineering
leaders are concerned with resilience, scaling, security, team morale, open
source, low code, managing stakeholders, emergent technologies, and legacy
solutions.”

“The evolutionary architect is one who understands that pulling off this
feat is a constant balancing act. Forces are always pushing you one way or
another and understanding where to push back or where to go with the flow
is often something that comes only with experience. But the worst reaction
to all these forces that push us toward change is to become more rigid or
fixed in our thinking.” – Sam Newman, Building Microservices

Scale up Digital Transformation with
Microservices Architecture 3

Digital Transformation Value Drivers

Now that we know what all factors digital transformation relies on, let us
have a look at the digital transformation drivers of many organizations:

Scale up Digital Transformation with
Microservices Architecture 4

What are Microservices?

“Microservices are independently deployable services modelled
around a business domain. They communicate with each other via
networks, and as an architecture choice offer many options for
solving the problems you may face. It follows that a microservice
architecture is based on multiple collaborating microservices.”

� – Sam Newman
� Monolith to Microservices Evolutionary Patterns to Transform Your Monolith

Gartner defines microservice as an application component that is tightly
scoped, strongly encapsulated, loosely coupled, independently deployable,
and independently scalable.

Microservices are a type of Service Oriented Architecture (SOA). It deals with
one functionality and possibly one DB (database), deployed as containers
running on a container orchestrator that can run multiple instances of the
container as per the scalability needs. Compared to building entirely new ap-
plications, adding the functionalities are quicker and with smaller test cycles.

A microservices style is an approach to developing cloud-native software
applications as a suite of small components, or services, which are designed
around a single business workflow and work together.

In an Internet-driven world, where speed is the primary differentiator, com-
panies cannot afford to waste time waiting to introduce new services and
products. APIs and microservices allow teams to quickly develop new ser-

Scale up Digital Transformation with
Microservices Architecture 5

vices and get features out easily. Microservices and APIs also allow teams
to break down old systems into task-specific modules.

Web

Mobile

MongoDB

Service C

ZooKeeper

API

Redis

Service B

Service A MySQL

json

json

json

redis

json

bson

jbdc

zookeeper

protobuf

The Microservice architecture pattern corresponds to the Y-axis scaling of
the Scale Cube model of scalability.

	 The Emergence of Microservices

Talking about the emergence of microservices, there have been numerous
claims as to the origin of microservices. Whilst vice president of Thought-
Works in 2004, Fred George began working on prototype architectures based
on what he called the “Baysean Principles” named after Jeff Bay.

In the year 2005, Peter Rodgers introduced the term “Micro-Web-Services”
during a presentation at the Web Services Edge conference. As opposed
to the traditional thinking and SOA architecture hype, he argued for REST
services and discussed “Software components are Micro-Web-Services”.

In May 2011, people in a workshop near Venice for software architects used
the word “microservice” to describe an architectural style several of them
had recently explored. In May 2012, they decided microservices was the
most appropriate name for their work and formally adopted it. They had
been experimenting with building continuously deployed systems while

https://microservices.io/articles/scalecube.html

Scale up Digital Transformation with
Microservices Architecture 6

incorporating the DevOps philosophy. This form of architecture quickly
gained popularity.

The Cloud Microservices Market Research Report of February of 2020 has
predicted the size of the global microservice architecture market will increase
with a compound annual growth rate of 21% from 2019 to 2026 with the
market reaching a value of $3.1 billion by 2026.

https://www.linkedin.com/pulse/revisiting-agile-devops-philosophies-keith-d-foote/
https://martinfowler.com/articles/microservices.html
https://www.marketsandmarkets.com/Market-Reports/cloud-microservices-market-60685450.html

Scale up Digital Transformation with
Microservices Architecture 7

The Monolith

A Monolith is an application that is built as a single unified unit. Monolithic
architecture is the traditional model of software program that is self-con-
tained and independent from other applications. A monolithic architecture
is a singular, large computing network inclusive of a single code base that
couples all the business concerns together. To make a change to this sort
of application requires updating the entire stack by accessing the code base
and building and deploying an updated version of the service-side interface.
This makes updates restrictive and time-consuming.

Monoliths can be convenient early on in a project’s life for ease of code
management, cognitive overhead, and deployment. This allows everything
in the monolith to be released at once.

	 Monolith v/s Microservices

	P Whether it is a single process monolith or a distributed monolith, it
is more vulnerable to the coupling. Especially, implementation and
deployment of coupling. When an organization grows, the number of
teams grows, hence developers wanting to change the same piece of
code and the teams wanting to push the functionality live at same time
can create chaos and result in delayed delivery.

	P With the monolith, you must be ready to face the challenges of delivery
contention. But a microservice architecture will offer concrete boundar-
ies in a system around which the ownership lines can be drawn, while
offering the flexibility on how to reduce the problem.

Scale up Digital Transformation with
Microservices Architecture 8

	P With microservices, the idea is to split your application into a set of
smaller, interconnected services instead of building a single monolithic
application. Each microservice is a small application that has its own
hexagonal architecture consisting of business logic along with various
adapters. Some microservices would expose a REST, RPC or message-based
API and most services consume APIs provided by other services.

With microservices projected to grow globally at a
22.5% rate between 2019 and 2025, the choice between
monolithic and microservices architectures needs to be

carefully considered

Scale up Digital Transformation with
Microservices Architecture 9

Defining the boundaries of Microservices —
Coupling and Cohesion

“Understanding the balancing forces between coupling and
cohesion is important when defining microservice boundaries.
Coupling speaks to how changing one thing requires a change
in another; cohesion talks to how we group related code. These
concepts are directly linked. Constantine’s law articulates this
relationship well: A structure is stable if cohesion is high, and
coupling is low.”�

� —Larry Constantine

	 What is Cohesion?

Cohesion is the degree to which the members of a certain class belong
together. Simply put, the code that changes together, stays together.

It is a measure of how deeply each piece of device module functionality
relates (Fenton and Bieman, 2014).

In microservices-oriented systems, a low degree of cohesion is accomplished
by pooling specific business processes together, such that, if developers need
to change actions, only a single microservice must be modified (Newman,
2015).

Scale up Digital Transformation with
Microservices Architecture 10

	 What is Coupling?

As the term says, coupling is the situation when a part of the code chang-
es, every other thing needs to change. Tight coupling leads to changes in
the structure of code, which can be quite expensive to deal with. Having
to make changes across one or more independently deployable services,
perhaps dealing with the impact of breaking changes for service contracts,
is likely to be huge.

There are different types of coupling, but that is a topic for some other time.

Scale up Digital Transformation with
Microservices Architecture 11

Shift to Microservices from Monoliths

Deciding to shift to microservices might need a good amount of under-
standing of its business case scenarios, but to begin with it requires more
attention and research. During planning, you should at least be able to
discuss the goal with your technical partner.

1 	Understanding the Goal

Understand that Microservices aren’t the goal. Adopting microservices
architecture should be a decision, not the goal. It will help you achieve
something that isn’t currently achievable with your existing system
architecture. Without properly defining what you are trying to achieve, it
would be difficult to inform the decision-making process about the options
to choose. What you are trying to achieve by adopting microservices
will greatly change where you focus your time, and how you prioritize
your efforts. It will also help you avoid becoming a victim of analysis
paralysis—being overburdened by choices. You also risk falling into a
cargo cult mentality, just assuming that: “If microservices are good for
Netflix, they’re good for us!”

2 	Benefits of Microservices

	P Independent deployment: Each service can be modified and up-
graded without touching the entire system. They can be scaled
independently from one another as well if one feature is under too
much load because of excess requests.

Scale up Digital Transformation with
Microservices Architecture 12

	P Lower blast radius of failure: Clear boundaries between the services,
coupled with their micro size, limit the impact of new releases and
ensure fault isolation. A failure in one service does not take down
unrelated functionality, with the rest of the system remaining intact
and continuing to provide services to users.

	P Data Isolation: Data sovereignty per component is an essential fea-
ture of microservices. A microservices architecture makes it possible
to clearly delineate services that touch data.

	P Use of the right technology: Microservices also simplify adopting
the latest technology or integrating with third-party tools as needed.

	P Efficiency: This model minimizes handoffs when one team needs to
wait for another to complete their task, be it deployment or testing
before they can start their work. With no dependence on another
team, the speed of development accelerates.

	P Improved agility: It facilitates agile DevOps and continuous delivery
practices, enabling software engineering teams to increase the cadence
at which they can deploy new features.

	P Improve robustness: By using microservices, we can implement a
more robust architecture because functionality is decomposed—that
is, an impact on one area of functionality need not bring down the
whole system.

	P Scaling the development team: With microservices architecture,
you can clearly identify the boundaries and limit the coupling with
each other while having the pieces of code that can be worked on
independently. Therefore, we hope we can scale the number of de-
velopers by reducing the delivery contention.

	P Embracing new tech: With Monoliths, the technology choices are
quite limited. There is just one programming language on the backend.
Generally, we are fixed to a single deployment platform, one operating
system, one type of database. With a microservice architecture, we

Scale up Digital Transformation with
Microservices Architecture 13

get the option to vary these choices for each service. By isolating the
technology change in one service boundary, we can understand the
benefits of the new technology in isolation and limit the impact if
the technology turns out to have issues.

	P Reduced Security threats: Platforms that are no longer supported
and maintained can lead to system and data vulnerabilities.

	P Elimination of Technical threats: The inability to integrate with
modern applications can limit a business’s ability to operate and
serve customers.

	P No Business threats: Aging systems can experience technical failures
and frequent breakdowns, interrupting business operations.

Business Benefits

Adopters are reporting multiple benefits of using microservices, according
to the IMB survey of 1,200 IT executives and developers. The most import-
ant microservices advantages they’ve felt include:

3 	When Not to Choose Microservices

There are a few situations when microservices might be a bad idea. In
situations of having an unclear domain, for start-ups, while developing
customer-installed and managed software, and when you don’t have a
good reason to shift to microservices.

Scale up Digital Transformation with
Microservices Architecture 14

	P Start ups: This may sound weird and pointless as many well-known
organisations for their use of microservices are well-considered d
start-ups. But as a reality check, many of these companies such as
Netflix, Airbnb, etc moved towards microservice architecture later in
their evolution.

	P Customer-Installed and Managed Software: If you create a software
that is being shipped to customers who then operate it themselves,
it can surely be a bad choice. When you migrate to a microservice
architecture, you push a lot of complexity into the operational domain.

	P Not Having a Good Reason: This is probably one of the biggest
reasons to not adopt microservices. If you do not have a clear idea
of what exactly it is that you’re trying to achieve.

	P Not Having Clear Domain: When there is a lack of clear and precise
domain ideas, , choosing microservices can lead to a disaster. Even
worse than having a single monolithic system.

Scale up Digital Transformation with
Microservices Architecture 15

When Enterprise Should Shift from Monolithic
to Microservices

Even after the adoption of mini services and agile DevOps and continuous
delivery practices, if you still can’t achieve the software engineering cadence
goals, then it may be time to adopt a microservices architecture. The perfect
time for an organization to migrate from monolithic to microservices is when
your organization is growing and is facing productivity issues.

When an organization is at a smaller scale it usually practices following
monolithic architecture. In today’s world of nimble competition, everything
as a service (XaaS) has brought significant challenges to the established
organizations that once dominated their markets.

For any organization to have a distinctive and comprehensive architecture,
shifting to microservices is one of the finest choices.

Scale up Digital Transformation with
Microservices Architecture 16

Expectations from Microservices Architecture
While Considering the Shift from Monolith

1.	 Componentization via Services

A component is a unit of software that is independently replaceable
or upgradeable. By using microservice, the application is divided into
separate components as services that can be deployable independently
and run on their own process means that each component can be
scalable independently and failure on one component will not affect
other components in an application.

2.	 Organized around Business Capabilities and/or Sub Domains

Usually, architecture is organized around technology layers (i.e., UI layer,
server-side logic, database) but in microservice, architecture is organized
over business capabilities and subdomains.

In Business capabilities, the application focuses on business values and
objects (i.e., Project management, Document Management). In Domain-
driven design (DDD) subdomains, the application focuses on problem space
- the business as a domain. A domain consists of multiple subdomains.
Each subdomain corresponds to a different part of the business.

And organizing architecture around business capabilities and/or sub
domains gives:

	P Stable architecture since Business capabilities and subdomains are
relatively stable.

	P Incremental development and evolving architecture continuously (i.e.,
possible to implement continual architecture—building an architecture
that has no end state and is designed to evolve with an ever-changing
software development ecosystem.)

Scale up Digital Transformation with
Microservices Architecture 17

3.	 Products not Projects

The product mentality ties in with the linkage to business capabilities.
Rather than looking at the software as a set of functionalities to be
completed, there is an ongoing relationship where the question is how
software can assist its users to enhance business capability.

The smaller granularity of services can make it easier to create personal
relationships between service developers and their users.

4.	 Decentralized Governance

Systems should be language agnostic. One component can be developed
in Java, and another can be developed in .NET. The decision of choosing
a technology platform for a particular service should not affect the
application architecture.

 In other words, microservices can allow you to embrace different
technologies more easily. But embracing multiple technologies does
not come without overhead, so we should place some constraints on
language or platform selection.

5.	 Decentralized Data Management

Systems should have a decentralized database. Ideally, each component or
microservice should have its own database, with whom only that service
is interacting. No other component or service can fetch or modify the
data in that database.

This isolates the impact of schema changes. Development teams can be
more in control of the impact when planning releases.

6.	 Infrastructure Automation

Embrace the concept of DevOps. Build it, Run it.

Each component in the system should be cohesive, independent, and
self-deployable. It should not be dependent on any other component

Scale up Digital Transformation with
Microservices Architecture 18

or resource to work or deploy. It should have Continuous Integration/
Continuous Deployment (CI/CD) in place to ship faster.

The system should have automated testing in place. Speed is one of
the most desirable features of microservice architecture. In the cycle of
build, test, and ship, if automated testing is not in place, then it cannot
meet the goal.

7.	 Design for Failure

Any component/service failure should be in isolation. Failure of one service
should not make the whole application go down. If it fails, it should not
affect other components/services. A failure rollback mechanism should
be in place. That means if one service fails, it should be easy to roll it back
to an older working version.

Scale up Digital Transformation with
Microservices Architecture 19

A Few Approaches for the Migration
of Monolithic to Microservices

1 	Domain Driven Design

The migration of a big monolithic application to a microservice architecture
is a promise made by IT to business to reduce cost, increase operational
efficiency, and gain competitive advantage. Architecture design holds the
key to success with a forward-looking vision with a 5 to 8-year timeline.

In domain driven design approach, the functionalities are divided based
on the domains they serve with a bounded domain context where the
entities talk to each other. This way, defining a clear set of domain objects
[aggregates] and the entities to avoid chatty services is possible. In
subdomain decomposition, we will go a step deeper, where we decompose
the applications based on subdomains in each business domain with
loosely coupled services adhering to common closure principle. For
example, a business in the manufacturing and retail domain may have
major domains, such as manufacturing, warehouse and retail. In retail, it
may have order, price, customer, loyalty, etc.

To decompose monolith to microservices in domains and subdomains, it
is good to follow the below mentioned steps at a high level:

	P Detailed domain analysis

	P Draw clear boundaries between domains (Make it crisp and avoid
smoky boundaries in the definition stage, do not rush as this step
may consume some time)

Scale up Digital Transformation with
Microservices Architecture 20

	P Entity definitions bound to the domain and made simple

	P Identify access patterns of the domain entities

	P Identify orchestration needs of the entities as per access patterns

	P As per all the above, define a microservice

Implementing DDD approach directly in a big bang way has a high
initial risk approach. The chance of failure is higher when converting the
existing production application to microservice based architecture in a
single shot. The risk increases multiple folds, considering the non-clean
legacy coding patterns and multiple bug fixes applied over the time by
relatively less domain specific development teams.

2 	Strangler Pattern

Talking about another approach, strangler implementation approach is one
of the better and safer implementation approaches. In the beginning, one
must consider refactoring and building specific functionality of the big
monolithic application to the modern microservice architecture, which can
still be a part of a business domain as per our DDD approach.

Once the functionality is developed, tested and ready to use, strangle the
same functionality in monolithic application and route the requests to the
newly built microservice.

Scale up Digital Transformation with
Microservices Architecture 21

The Advantages of this approach are:

	P Less risky and more stable application migration

	P Zero business impact, gradual and silent migrations

	P Can implement test driven development methodologies

	P Co-existence of monolithic and microservices

	P Easy failover

Scale up Digital Transformation with
Microservices Architecture 22

Cygnet Digital’s Approach to Digital
Transformation with Microservices

Most of the time, when Cygnet Digital engage with clients to support them
in their Digital transformation journey, the clients are usually looking to
address the digital transformation drivers/pain points mentioned above.
However, they end up most of the time in an engineering activity unless
it’s just a human process inefficiency, but even while they address human
inefficiency and if their business landscape allows, they move to process
automation tools for redundant processes and can improve their process
efficiency with reduced cost.

Carry out your digital transformation
initiatives effectively and maximize the
value of your technology investments.

Find out the hidden potential in your
business, systems, and processes.

GET CONSULTED BY OUR ADVISORS

>

Scale up Digital Transformation with
Microservices Architecture 23

Discovery

  1.	 First phase of the digital transformation mandate starts with:

•	 Understanding the client’s business environment

•	 Management commitment on the client side

•	 Agreement on the scope

•	 Architecture principles

•	 Governance

  2.	 Transformation vision as “THE END GOAL”.

  3.	 Market research on micro-trends, competitive dynamics, and

technology advancements to ensure Roadmap is in line with current

market needs.

  4.	 Identification and articulation of business scenarios.

  5.	 Gap analysis—Process, Data & Code.

  6.	 Assessment and audit of the existing tech stack:

•	 Architecture: High-level architecture and components

•	 Code: Audit of source code to detect code errors, vulnerability,
and compatibility with the new platform

•	 UI/UX: Assessment of user interfaces, supported operations,
and process

  7.	 Choosing the right migration approach for shifting to microservices:

•	 Big Bang: Lift and shift approach where the entire application
is re-hosted to the cloud in a single milestone. The Big Bang
approach offers a shorter implementation time and is consid-
ered perfect for organizations that utilize smaller, non-complex
workloads.

Scale up Digital Transformation with
Microservices Architecture 24

•	 Phased: Here, the application workloads are shifted to the cloud
in multiple, smaller milestones implemented over a period.

  8.	 Choosing the right Tech Stack/Cloud offerings: Pragmatically choosing

the right cloud service:

•	 IaaS: To acquire infrastructure resources such as storage, networks,
processors, and servers on demand

•	 PaaS: Managing the hardware and operating systems to focus
on developing codes and automating deployment pipelines

•	 SaaS: Development of applications to be offered over the web

  9.	 Envision the future state and define the IT ecosystem roadmap

10.	 RACI matrix definition for right governance

11.	 Performance metrics/KPIs to measure outcome

12.	 Documentation of architecture both “AS-IS” and “TO-BE”.

13.	 Alignment of data dictionary with application should be interwoven

to avoid data leakage.

14.	 Document NFR’s with right KPI’s.

15.	 Establishment and development of the transformation roadmap

covering build vs buy decision-making.

POC development

  1.	 Foundation building blocks

  2.	 Delivery of POCs

  3.	 Re-assess long-term goals and IT ecosystem roadmap

  4.	 Updated IT ecosystem roadmap

Scale up Digital Transformation with
Microservices Architecture 25

Incremental development

  1.	 Requirement analysis

  2.	 Foundation building blocks

  3.	 Release plan

  4.	 Incremental deliveries

  5.	 Re-assess long-term Goals and IT ecosystem roadmap

  6.	 Updated IT ecosystem roadmap

Data migration (Brown Field Perspective)

  1.	 Understand “AS-IS” entity’s / table & record of business

  2.	 Overlap with application migration strategy, data follow’s service for

business continuity

  3.	 Parallel run approach irrespective of going big-bang or incremental

  4.	 Post go-live assessment for identify data leaks

Scale up Digital Transformation with
Microservices Architecture 26

Cygnet Infotech firmly believes that Digital transformation is a journey
that should be incremental in nature and digital engineering should
be in place to fulfil this journey to ensure both go in tandem to fulfil
the need of businesses and reach the end goal for the purpose-driven
organization.

During the process, the clients are also suggested to keep evaluating
their processes and IT landscape and identify what is working and
what is not, and at right time take the necessary steps to get on track
and emerge as a leader in their respective business domains.

Gain a detailed inside roadmap,
achieve architectural excellence,

and areas of improvement

Book for Technical Due Diligence

>

Scale up Digital Transformation with
Microservices Architecture 27

	 The steps we take during the migration phase—
Shift to Microservices from Monolith

1.	 Everything is changed by breaking up the monolith and altering
the way all developers and ops teams work in the organization.
The new processes are explained to the concerned stakeholders
to get the team on board.

2.	 Clients are advised to accomplish this migration incrementally. This
allows the monolith code to run alongside the new application that
consists of microservices. Decouple the services with a domain-driven
design. Try to gain a good comprehension of the problem space prior
to moving into the solution space. Before redirecting them to the
new service, extracting the capability’s data, logic, and user-facing
components is essential. Also, evaluate the cost versus benefits.

3.	 Prioritize the services for migration based on the type and scale
of dependency and ensure that while migrating the services
incrementally, communication between services and monolith is
configured through well-defined API contracts.

4.	 Over time, the functionality implemented by the monolithic
application reduces. It either transforms into another microservice
or disappears altogether.

5.	 Services in a microservice architecture is planned around business
concerns and not technical concerns. So, there may be a need
to create larger services instead of smaller services and defining
service boundaries may be an iterative process.

Scale up Digital Transformation with
Microservices Architecture 28

About Cygnet Digital

Cygnet Digital is a leading Digital Engineering Services company that
works with its client to achieve their digital transformation goals with a
core focus on modernizing their systems while leveraging Microservices
architecture. We aim to give clients an ideal technology partner experience
that empowers them to earn customer delight at each stage of their
customers’ journey.

We make sure the capabilities delivered by software products are modular,
rapid, and safely assembled, disassembled, and recomposed as per
evolving business, customer and market needs with faster delivery while
being flexible. We help scale businesses to thrive in the competitive
market using a consultative, customer-centric approach. Our solutions
range from standalone bespoke development and managed services to
building connected ecosystems across the enterprise and developing
smart systems by leveraging emerging technologies like AI, Blockchain,
and automation.

Scale up Digital Transformation with
Microservices Architecture 29

Closing Summary

Adopting microservice architecture involves various steps and many
decisions must be taken on various layers. We suggest that organization
must plan it properly, select the right tools, select the right cloud partners,
use cloud features to avoid re-inventing the wheel, calculate the cost
including cloud usage costs, and as far as possible, be open to using
cloud environments to optimize usage. The microservice maturity model
should be considered along with the IT roadmap.

Cygnet Digital is your dedicated
digital transformation partner. At
Cygnet, through our proprietary frame-
work, Cygnet COSMOS, we empower
organizations across the spectrum of
business intelligence, and customer
experience.

Our comprehensive suite of services
encompasses Domain Consulting,
Digital Engineering, and Enterprise
Applications, with a keen emphasis
on Digital Commerce and Experience.
We harness the potential of Data,
Analytics, AI, IoT, and Automation,

coupled with AI-powered Testing as a
Service, to drive your transformation
agenda.

With � agship products like Tax
Transformation, Cygnet IRP, and
Finance Transformation, we are dedi-
cated to a digitally enabled future for
your enterprise.

What sets us apart is our unwavering
commitment to a “Business First”
approach. We're not just developing
applications; we're co-innovating with
you to forge the future.

360 Degree Customer
Experience

Rede� ning Healthcare
with Value Across
Patient Journey

Intuitive and Embedded
Finance & Insurance

Consumer Healthcare Finance &
Insurance

AI-Based Inventory
Optimization

CLM with AR/VR

Product
Development:

De� ne, Categorize,
Describe

Prevent & Protect:
Counterfeits, Promo

Codes & Brand IP

Underwriting, Policy
& Claims

Customer Experience
Management

Preempting &
Mitigating Risks

Portfolio
Management with

Robo Advisor

Clinical Trials

Drug Manufacturing
Intelligence

Drug Marketing

Patient Experience

Operations

Manufacturing

Intelligent & Connected
Supply Chain

Shipping Process

Warehouse
Operations

Customer
Satisfaction

Demand Forecasting
based Inventory

Management

Intelligent
Document
Processing

R7 VAT

Business
Application

Testing

e-Invoicing

Insights Driving
Decisioning

Purchase
Digitization

Smarter
Compliance

& Finance

COSMOS

GET IN TOUCH

https://www.cygnet-digital.com/?utm_source=ebook&utm_medium=ebook&utm_id=Content#contactus

	Introduction
	What Industry Leaders Say
	Digital Transformation Value Drivers
	What are Microservices?
	The Monolith
	Defining the boundaries of Microservices —Coupling and Cohesion
	Shift to Microservices from Monoliths
	When Enterprise Should Shift from Monolithic to Microservices
	Expectations from Microservices Architecture While Considering the Shift from Monolith
	A Few Approaches for the Migration
of Monolithic to Microservices
	Cygnet Digital’s Approach to Digital Transformation with Microservices
	About Cygnet Digital
	Closing Summary

